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The paper investigates the limits of solid state order which are physically possible on cooling thermotropic 
random copolymers from the liquid crystalline phase. The work extends earlier studies which have explored 
the limiting situation in conventional non-mesogenic random copolymers where only one component is 
considered crystallizable. The rigid nature of the polymer chains considered in this exercise has encouraged 
the development of a two dimensional computer modelling routine (Domino). Order associated with matches 
between adjacent molecules in a model is determined for both the quenched condition (Wunderlich's cold 
crystallization 7) and the searched condition which produces better matches by permitting particular levels of 
chain mobility and is closer to Flory's equilibrium theory of crystallization 4. The approach used involves 
finding the largest matching sequence between adjacent chains for a given set of conditions, and then noting 
all possible secondary matches. The matches found may be between regular sequences (i.e. -AAAAAA-, 
-BBBBBB- or -ABABAB-) or random sequences (e.g. -ABBABAAB-). Where matches between successive 
pairs of chains are opposite each other, they propagate laterally to give two dimensional 'crystalline' regions. 
Propagation of a particular random sequence gives rise to non-periodic layer (NPL) crystals, which have 
been discussed previously I a. Models have also been examined with chains built on the basis of non-random 
statistics. The variation in the extent of ordered regions has been explored as a function of the chain 
composition, chain randomness, relative motion between chains, relative lengths of units and axial variability 
of unit lengths. For the case of random chains without searching, the model parameters have been compared 
with those predicted on the basis of statistical analysis. The agreement is good. A probabilistic approach to 
'searching' has revealed considerable dependence on the particular search routine used, and the fact that the 
easiest situation to calculate will not necessarily be the most realistic. The results are discussed briefly in the 
context of experimental data from a thermotropic random copolyester of hydroxybenzoic and 
hydroxynaphthoic acids. 

(Keywords: random copolymer; liquid crystalline polymer; thermotropic mesophase; computer modelling; chain statistics; 
NPL crystallites) 

I N T R O D U C T I O N  

The issue is order in random copolymers. Chains in which 
two or more different types of chemical unit are joined in a 
random sequence are not able to contribute fully to the 
three-dimensional periodicity of a crystal lattice. 
However, isolated regions of order can be envisaged 
under some circumstances, and this paper describes a 
simple model designed to explore both the type and 
extent of the order which may be present. The fact that 
attention has been focused on the problem by the 
observed behaviour of rigid-chain random copolymers 
which melt to give a liquid crystalline phase, does not 
limit the relevance of the model to this class of polymer. 
Flexible chain random copolymers and atactic 
homopolymers may also be subject to the same 
principles, although chains which align parallel in the 
melt form the most comfortable basis for the model. 

The central questions asked are first, given that a 
random copolymer chain will have, by chance, a certain 
proportion of runs of like units which exceed a given 
length, to what extent is it possible for such runs to 
segregate and form perfect, albeit small and isolated, 
crystallites? Second, is it possible for identical but 
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random sequences to segregate and thus propagate 
lateral order in a unit which is aperiodic in the direction of 
the chain axis? Such a sequence matching process might 
be seen to have more in common with biological 
molecules than synthetic polymers. 

The limits to which such processes are possible, in 
purely geometric terms, are explored by building 
computer models of systems of chains, and in some cases 
comparing the results with statistical calculation. 
Experimental indications of order in rigid chain random 
copolymers are summarized, and the relevance of the 
model predictions to these observations is discussed. 

B A C K G R O U N D  

The question of crystallization of one component  of a 
random copolymer was first addressed by Flory 1, and the 
study was extended in subsequent publications 2- 5. The 
thermodynamic treatment was based on the premise that 
homopolymer sequences in random copolymer chains are 
able to segregate and crystallize. The model thus takes no 
account of any kinetic or geometric constraints, due to 
the fact that the sequences are part of a chain, on the 
formation of the crystallites. The approach led to the 
prediction of a decrease in melting point with increasing 
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Figure 1 Monomer units of hydroxybenzoic acid and hy- 
droxynaphthoic acid 

concentration of the second 'non-crystallizable' 
component in the random chain, as expressed by the well 
known equation: 

1 1 R 
Tm TmO=-AH~u'ln(P) (1) 

where T ° is the melting point of the pure homopolymer, 
and Tm that of the copolymer. AHu is the enthalpy of 
fusion per mole of crystallizable units, and R is the gas 
constant. P is the probability that one crystallizable unit 
follows another, and for random chains will be equal to 
the mole fraction of such units. 

The predicted, depressed, melting point Tm corresponds 
to the melting of the largest crystallites incorporating the 
longest sequences in the chains, but as their volume 
fraction is low it is made clear 3 that it will be difficult to 
detect this limiting temperature experimentally. Indeed, it 
is referred to as the temperature of incipient 
crystallization 4. Measured melting points 5 are lower than 
those predicted, not only for this reason, but also because 
of the presence of both kinetic and geometrical 
constraints in real systems. Interestingly, other authors 6 
have used equation (1) to demonstrate that supposedly 
atactic PVC chains actually contain substantial 
sequences of syndiotactic units. 

In the absence of constraint, these approaches predict 
that, at sufficiently low temperature, all of the 
crystallizable component of the random chains will in fact 
have crystallized. The predicted crystallinity thus is 
equivalent to the concentration of the component. This 
assumption has been highlighted by Wunderlich 7, who 
considered the case of total constraint, in which no 
segregation of sequences of like units is deemed possible. 
The crystallinity is very much lower than in the 
equilibrium case, especially when the number fraction of 
crystallizable units drops below 0.7. This totally 
constrained process was called 'cold crystallization'. 
Attempts to explore the influence of constraints have led 
to consideration of the incorporation of units of one type 
into crystals of the other as defects a- 12. A capacity for 
defects within the crystals will reduce the limiting 
influence of kinetic and geometric constraints on the 
crystallinity observed under any particular set of 
conditions. 

The model developed below is specific in that it enables 
the prediction of homopolymer crystallinity for defined 
conditions of the geometrical constraint by virtue of the 
incorporation of the units into the chains, and of the 
kinetic constraint whereby conditions can be explored 
ranging from 'quenched' which bears a close relationship 
to Wunderlich's 'cold crystallization '7, to partially 
'segregated' according to predefined rules. At this stage the 
model is used only to predict limits of crystalline type 
order and has not yet been developed as the basis for 
predictions of melting points. However, it has proved 
possible to study the influence of non-random 

arrangements of units, 'blockiness', on the level of order 
obtainable, and to review carefully the geometric factors 
governing the lateral register of given random sequences 
along the chain, to form what are known as non-periodic 
layer (NPL) crystallites. 

A MODEL TO SIMULATE CHAIN 
ORDERING IN COPOLYMERS-- (DOMINO*) 

Chain parameters 
The chains used in the model are straight random 

sequences of two different units of different length, there is 
otherwise no chemical detail. The chains are thus 
represented as sequences of A and B. Such chains are a 
simple analogue of comparatively straight random 
copolymer chains employed in many types of liquid 
crystalline thermoplastic. A particular example of such a 
polymer is the copolyester of hydroxybenzoic and 
hydroxynaphthoic units which have approximate lengths 
of 0.63 and 0.83 nm (Figure 1). 

The parameters used in this study, which are varied at 
appropriate stages, are: 

1 Lengths of A and B units. 
2 Relative proportions of A and B. This is called the 

chain composition and is defined as the number fraction 
of A units, XA and of B units, XB. 

3 Departures from random statistics whereby the 
probability of a unit occurring at a particular position 
depends not only on the overall composition but on the 
nature of the previous unit in the chain. Where the 
probability of like following like is enhanced, the chain is 
said to become 'blocky'. Where dissimilar pairs are more 
probable than similar, the chain is described as 'anti- 
blocky'. In the limit, 'blockiness' would imply a block 
copolymer with long runs of each type of homopolymer, 
whereas 'antiblockiness' would tend to a regular 'AB' or 
alternating copolymer, at least for X A = X B = 0.5. 

Chain building 
For any copolymer chain, the ratio of probabilities: 

P AA + Ps. - (2) 
PAB + PBA 

where Pij is the probability of unit i following unitj along 
the chain, may be used to describe the degree of 
'blockiness'. In the special case of XA = 0.5, Rp will be 
unity for a random chain. It will tend to infinity for a very 
blocky chain, and zero for an alternating copolymer. A 
blocky chain may thus be built by biasing the random 
number generator in favour of A following A and B 
following B. 

In order to be able to predict the value of Po and hence 
Rp for any given amount of bias, it is helpful to consider 
the copolymerization reaction kinetics developed by 
Dostal la, Alfrey and Goldfinger 14, Mayo and 
Lewis 15, Simha and Branson 16 and Wall 17, which yielded 
the 'copolymer equation': 

d[A] [A]q[A]+[B] 
d[a]  [a]  [a]  +r.[B] 

(3) 

* The name Domino stems from analogy with the game 'Dominoes'. 
The program runs on an Acorn Master microcomputer 
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where ri= kiJk o, kq being the rate constant for a reaction 
in which a monomer j reacts with a chain terminal group 
i. The square brackets denote concentrations and for 
simplicity we consider only the case when rA = rB (= r). If 
[A] and [B] are considered to be 'feed' concentrations for 
the building process (in mole fractions), then the ratio of 
A to B in the chain formed at any instant is given by 
d[A]/d[B]. Since we may assume infinite reservoirs of 
monomers A and B, [A] and [B] may be considered 
constant, as may d[A]/d[B], which may be replaced by 
XA/XB. Equation (3) becomes: 

XA [A] r [A]+[B]  

XB - [B ]  [A ]  + r [B]  
(4) 

and relates the feed composition to final chain 
composition via the ratio of rate constants, r. The rate of 
production of j-units following/-units on a chain is given 
by: 

®o=kij[j][chains terminating in i] (5) 

The probability of finding a j-unit following an/-unit in a 
chain will be given by the relative rate of formation 
(normalized so that ~ P q =  1), i.e. 

i , j  

Oij 
P's - ~®u (6) 

k,l 

Thus equation (2) becomes: 

Hence, 

~P r[i] (11) 
,1 r[i] + [j] 

i.e. 

r [A ]  [B ]  
qJAA -- r [A ]  + [B]  ; qJA. -- r [A ]  + [B]  

[A] riB] 
qJSA-[A]+r[B] ; qJBB-[A]+r[B] (12) 

From the above analysis we conclude that ideal chains 
(r= 1) of composition XA=0.75 and 0.9, have Rp= 1.67 
and 4.56, respectively. So we define a new parameter R~,: 

R'p = R p / R ~  eal (13) 

which gives the blockiness of a non-random chain relative 
to an ideal random one of the same composition. 

The random number generator used to produce the 
random copolymer chains was tested over many tens of 
thousands of numbers in a check to see if there was any 
systematic bias in the blockiness of the chains produced. 
Any variations found were shown, using the X 2 test, to be 
not significantly different from the ideal case. We 
therefore conclude that the results described here are not 
coloured in any way by any difficulty in building 
genuinely random chains. 

OAA + OBB 
Rp -- OA B -I- OBA (7) 

The steady-state condition is that the concentration of 
chains terminating in a particular unit should remain 
constant. Therefore, the rate of change of end group type 
from A to B must equal the rate of change from B to A. 
Hence OAB = OBA, and substituting for O 0 from equation 
(5) gives: 

r [A ]  2 + [B ]  2 
Rp = (8) 

2 [A][B] 

So, if we specify the required blockiness Rp and chain 
composition XA, we are able to calculate, using equations 
(4) and (8), the feed composition [A] and the rate factor r, 
subject only to the constraint: 

2 X  A - 1 
Rp ~> ; [XA ~> 0.5] (9) 

2(1 - XA) 

which follows from substituting equation (4) into 
equation (8). 

In order to use this information to build a chain, we 
consider that we have a chain terminating in a particular 
unit i, and we evaluate the probability of the next unit 
being a j :  

Oq 

k 

(10) 

Chain matching 
Consider the random sequences of A and B units placed 

side by side in Figure 2a. The longest match of a 
homopolymer sequence is marked (i), and the longest 
match of any sequence is marked (ii). In either case the 
match is referred to as the primary match. The primary 
match does not depend on the relative lengths of A and B 
units; it is sufficient that they are distinguishable. Also 
noted on Figure 2a are potential secondary matches, 
based on any matching sequence of two or more units. 
These are potential matches only for the primary match 
is seen as locking the exact relative positions of the chains, 
and hence a secondary match is only achieved when the 
total lengths of the units separating it from the primary 
match are either equal for each chain, or differ by an 
integral number of unit lengths. The matching program 
seeks secondary matches by moving along the chains 
away from the primary match and noting where there are 
identical sequences in register to within a predefined 
distance. 

In any real system molecular mobility will provide the 
opportunity for chains to 'search out' better matches. 
Conceivably, this can occur by chains moving lengthwise 
with respect to each other as well as interchanging 
neighbours. The 'Domino' search routine steps one chain 
past the other (taking units off the bottom and putting 
them on the top) and records the best primary match 
found. The number of unit steps taken is known as the 
search length, and can be set at any value up to the length 
of the chain, which was fixed at 100 units for all the 
modelling calculations. Figure 2b shows the best primary 
match for any sequence after a 100 unit search, and also 
potential secondary matches. Not surprisingly, the 
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Figure 2 (a) Part of a pair of random chains, with units denoted by A 
and B, showing (i) the best homopolymer match and (ii) the best match 
of any kind. Potential secondary matches are also shown as broken 
boxes. (b) The same chains after searching. The best match is marked (ii) 

primary match is longer than in Figure 2a. The best 
primary match of homopolymer sequences is not shown 
in Figure 2b as it occurred with the chains in a different 
relative position to that depicted. When the search length 
is zero, the chain model will be referred to as 'quenched', 
whereas after a 100 unit longitudinal chain search it will 
be described as 'searched'. 

The longitudinal movement of chains relative to each 
other is but one realistic searching process. During the 
slow crystallization of a rigid chain random copolymer, 
there is also the possibility of lateral sorting whereby 
neighbouring molecules diffuse past each other until a 
match of suitable quality is found. Lateral sorting is not 
statistically equivalent to longitudinal searching, 
although the end result will be qualitatively similar in that 
the length of primary matches will be improved. The 
difference between the two possible searching routines is 
discussed later, in the context of algebraic solutions. 

The number and size of secondary matches should not, 
on average, be affected by trying different relative 
positions of the chains in a search procedure, except that 
where searching leads to a longer primary match, there 
will be somewhat less chain length available for secondary 
matches. Of the three chain parameters listed above, the 
relative lengths of the units will only influence secondary 
matches, while chain composition and blockiness will 
affect both primary and secondary matches. 

It should be noted that the approach which looks for 
the longest perfectly matched sequences is only one of 
several strategies. One could obviously set other criteria 
such as maximizing the number of like unit contacts 
between two chains within a particular error allowance. 
The philosophy adopted here is to find the limiting extent 
to which crystalline order is possible. If one permits 
defects within the crystals then, because of the statistical 
framework of the problem, the degree of 'crystallinity' 
obtained could appear significantly larger. 

RESULTS OF COMPUTER MODELLING 

All the results in this section are based upon two- 
dimensional models with 100 chains each of 100 units and 
except where stated, units of length 0.63 and 0.83 nm. The 
most important parameter required to describe primary 
matches is the mean match length, in numbers of units, 
expressed as a percentage of the length of each chain. This 
is called the primary match density, L(~) .  The 100 chain 
model appears sufficiently large to give representative 
values of the match density. Building successive models 
with the same chain parameters leads to match densities 
which vary by not more than a few per cent, although the 
variation is observed to increase on moving to extremes of 
composition or blockiness. Each numerical result shown 
in the figures was obtained by averaging three chain 
models. It should be emphasized that the primary match 
density will not be proportional to the chain length, and 
this aspect is explored through an algebraic approach 
described later. 

Regular primary matches 
Three types of regular primary matches are considered: 

those consisting of [-AAAAAA-] homopolymer 
sequences, those of [-BBBBBB-] sequences, and those 
comprising an alternating [-ABABAB--] sequence. The 
latter are of special significance when anti-blocky chains 
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are considered. In this context, the search for a 
regular match could mean any of the above sequence 
types being found, whichever is the longer. Thus, L(%) 
m a y  be broken down into three components, such that 
L(°//o)=LA(%)+LB(%)q-LAB(%), where LA(%) , LB(%) 
and LAB(%) are match densities for homopolymer A, 
homopolymer B and AB regular sequences, respectively. 

Random chains without searching. A quenched model 
with 100 chains each of 100 units is shown in Figure 3a. It 
was built by adding successive chains from left to right. 
The chains are random with equal proportions of A and B 
units (XA=XB=0.5). There has been no searching to 
optimize the match. Where there is a primary match this 
is emphasized in the figure by altering the tonal density of 
the matching units: black units become light grey, and 
dark grey units become white. The match densities are 
LA(~/o)= 0.95%, LR(%)= 1.07% and Lau(~o)= 1.97%. 

Figure 4a shows the effect of variation in chain 
composition XA on LA(%),/~(%), LAb(%) and L(%). Not 
surprisingly the match densities increase towards 100% 
as the chain compositions approach 100% A or 100% B. 
It is interesting to note that the primary matches rapidly 
become either completely type A or completely type B as 
the chain composition changes from exactly 0.5. 

The effect of searching. Figure 3b shows the model with 
parameters as for Figure 3a (XA=XB=0.5, random 
chains) except that the primary matches are the best 
found in each 100 unit search. They are longer: LA(%) 
=1.26%, LB=1.66% and LkB(~o)----3.42~o. Figure 
4b shows again the influence of chain composition. The 
effect of different search lengths up to 100 units, on the 
match densities for three chain compositions, XA=0.5, 
0.75 and 0.9, is illustrated in Figure 5. 

Figure 3 Plots of 100 random 100 unit copolymer chains, with 
XA = 0.5, showing homopolymer and AB regular primary matches: (a) 
no search, and (b) a search of 100 units. Unit A is shown in black, 
whereas unit B is dark grey. The matches are highlighted by altering the 
colours of the matching units from black to light grey, and from dark 
grey to white. The very thin vertical lines are the screen raster and should 
be ignored 

Nucleation weighting. Although one can view the 
chains modelled in Figure 3 as being tacked together by 
matching sequences, the order is not sufficiently extensive 
to be thought of as microcrystallinity. However, it is a 
basic premise that ordered regions, once established, will 
grow in preference to the formation of new entities. In 
other words there is a barrier to nucleation. Without 
assessing the size of any such barrier in the case of rigid 
chain polymers, the effect of various levels of nucleation 
weighting on the appearance of the matched regions was 
explored through the simple expedient of 'scoring double' 
(or more) for the length of a primary match which 
happened to be alongside that already found between the 
'previous' two chains. A model equivalent to that of 
Figure 3b, (random chains and a 100 unit search), but 
with nucleation weighting of 2, is shown in Figure 6 for 
compositions of XA=0.5 and XA ---- 0.75. The weighting 
leads to a small reduction in L(%) as indicated in Figure 
7. 

Implications for crystallinity. The model demonstrates, 
in accord with the thinking of Floryl - s, Wunderlich 7 and 
others 8-12, that crystallization of a random copolymer is 
conceivable, although the overall crystallinity will be low, 
especially when the chain composition is close to 50:50 
and there is no searching. Nevertheless, if such 
crystallinity does occur above the glass transition it will 
provide crosslink points between the c h a i n s  a n d  would be 
sufficient to endow the material with the properties of a 
solid. 

The model is two-dimensional, although it could be 
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Figure 4 LA % ((3), LB % (V) (upper diagrams), LAB % (O) and L % (,) (lower diagrams) versus XA for ideal copolymer systems: (a) no search, and (b) 
a search of  100 units 

designed to propagate in the third dimension as well. For 
the logic adopted, the chain organization predicted can be 
considered as being equivalent to sections through a 
three-dimensional model. 

Chains with non-random dispositions of units. The 
parameter R~, is unity for any ideal random chain, but 
tends to infinity for a full block copolymer, and to zero for 
an alternating polymer. In order to limit the number of 
variables, the effect of non-randomness in the chains is 
considered for only three compositions, XA=0.5, 0.75 
and 0.9, for 100 unit searches and without a nucleation 
weighting. Fioure 8 shows the match density percentages 
as a function of log(R~,) for the regular sequences 
described above. In Fioure 8a only homopolymer 
matches were sought, in Figure 8b only alternating 
matches. Fioure 8c shows the results of searching for the 
best regular match of either type. Fioure 9 compares the 
models for anti-blocky R~, = 0.2 and blocky R~, = 5 chains 

of composition XA = 0.5, built with 100 unit searches, but 
no nucleation weighting. The pronounced effect of non- 
random statistics in encouraging the formation of ordered 
regions is clearly apparent. 

Non-regular primary matches 
An extension to the treatment of A, B and AB regular 

sequences above, leads to the possibility of assessing 
matches between non-periodic sequences. The lateral 
propagation of a particular non-periodic sequence would 
lead to a rather special type of crystallite in which there is 
three-dimensional organized packing and yet no 
periodicity along the chain axis. Such crystals have been 
discussed by Windle et al. 18 who referred to them as non- 
periodic layer (NPL) crystals (Figure 10). They were 
proposed to explain the lateral sharpness of meridional X- 
ray reflections, at positions characteristic of random 
sequences 19-2~. However, in this work, the question of 
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Figure 5 Effect of search length on primary homopolymer/AB regular 
match density (L %): XA = 0.5 (O), XA = 0.75 (D) and XA = 0.9 ( l l )  

their thermodynamic stability is not addressed, for it is 
purely the geometric limits to NPL type matching which 
are explored, with particular reference to the influence of 
chain composition and blockiness. 

Chain and match composition. The mean length of the 
primary NPL matches expressed as a percentage of the 
total chain length is shown as a function of chain 
composition in Figure lla, for no searching and in Figure 
llb for the 100 unit search. In each case the 
corresponding curves for the total regular sequence 
matches are shown as in Figure 4. It is clear that allowing 
the matches to be based on non-periodic sequences 
increases their probable length, especially in the mid- 
range of Composition. Figure 12 shows the composition of 
the matched sequences as a function of the overall 
compositions of the chains. It is particularly interesting 
that the match composition skews towards the dominant 
unit type. Figure 13 shows NPL primary matches in 100 
chain models with XA = 0.5 for (a) no search, (b) 100 unit 
search and (c) 100 unit search with a nucleation weighting 
of 2. 

Chain and match blockiness. Figure 14 is similar to 
Figure 8c, but plots match density against log(R~,) for 
NPL rather than regular matches. As expected from the 
previous discussion, the NPL matches are longer than 
regular matches for the same chain composition. Figure 
15 examines the blockiness of the primary matches 
compared with the blockiness of the chains containing 
them. The blockiness of the matches appears to be more 
extreme than that of the chains, i.e. for XA =0.5, when 
R p <  1 the matches tend to the anti-blocky extreme, 
whereas when Rp > 1 they tend to the blocky extreme. For 
XA = 0.75 and 0.9, where the degree of anti-blockiness 
possible in the chain is limited (equation (9)), the matches 
tend only to the blocky extreme. The system is 
intrinsically biased so that the blockiest parts of the 
chains are the most likely to find a match. It is also for this 
reason that the match composition skews beyond the 
chain composition in the direction of the dominant unit. 

Figure 6 Plots of random copolymer systems showing homopolymer 
and AB regular primary matches for a search length of 100 units (full 
length) and a nucleation weighting of 2: (a) XA=0.5, (b) XA=0.75 
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Figure 7 Primary match density (L %) versus nucleation weighting for 
best regular matches (&), and best match of any type (A), for random 
copolymer systems with composition XA = 0.5, and a search length of 
100 units (full length) 

Secondary matches 
So far only the best matching sequence between two 

adjacent chains has been considered. However, once this 
primary match sequence has been fixed, in general there 
exist a number of potential secondary matches between 
other parts of the chains. Secondary matches are defined 
as any matching sequence of any length. They are 
necessarily N P L  sequences, since any two adjacent 
regular secondary matches will form one, longer, non- 
regular match. Whether or not a potential secondary 
match becomes an actual secondary match, depends on 
the two chains being in register at that point, which in 
turn depends on the relative lengths of units A and B, and 
the extent to which mis-registering will be allowed. In our 
model we consider all chains to be slightly elastic, and we 
define an axial variability parameter  as the expected 
percentage variation in monomer  unit length: 

f =~./~ × 100~  (14) 

where l~ is the length of unit i. Further,  we assume that f 
will apply equally well to a sequence of monomers  of any 
length. The chains are considered to be pinned together at 
any match, and new secondary matches are accepted if 
their mis-register is less than f ~  of the distance, in 
Angstroms, to the nearest previous match. The variability 
parameter ,f ,  represents the ability of a chain to extend or 
shorten itself, and can be expected to come within the 
range resulting from thermal motions. 

Figure 16 shows a typical system containing both 
primary and secondary matches highlighted as described 

Figure 8 Primary match densities (L %) are shown as a function of the 
blockiness parameter Ri, for XA = 0.5 (&), 0.75 (/k) and 0.9 (xT). In (a) 
the density of pure homopolymer matches is shown, whereas 0a) shows 
the density of AB regular matches; (c) shows the best primary match 
density, whether it be homopolymer or AB regular 
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above. A nucleation weighting of 5 was used to make 
the primary matches create a single ordered entity, and 
hence make it easier to see the secondary matches. 

Variability in axial length. The effect of changing the 
axial variability parameter on mean match density is 
shown in Figure 17 for N P L  primary matches. As might 
be expected, increasing variability leads to more 
secondary matches. The graph shows both the 
normalized secondary match density, S(~o), defined as the 
percentage of free chain (whole chain minus primary 
match) contained in secondary matches, and the total 
match density, T(~o), defined as the percentage of chains 
involved in either primary or secondary matches. It is 
T(Yo) which represents the total crystallinity which might 
be seen. Energy calculations have shown that a suitable 
value for the variability parameter, at room temperature, 
is about 2 ~o for poly(hydroxybenzoic acid), which leads 
to a crystallinity of 25 ~o for N P L  matches, for XA =0.5, 
which may be compared with a figure of 17 ~/o as measured 
by Blundel122. Figure 18 shows how blocky chains 
enhance the total crystallinity, but reduce the secondary 
match density, S(~o) for f ~< 1 ~o. This is seen as being due 
to blocky chains having fewer opportunities to come into 
register, for once a mis-register occurs it will be 
maintained if both chains consist of a long run of similar 
units and the axial variability is small. 

Variation in monomer unit lengths. The effect of 
variation in monomer unit lengths is shown in Figure 19. 
In this figure, the length of unit A was fixed at 0.63 nm and 
the length of B varied. Peaks are observed in Figure 19 at 
those points where the two unit lengths have common 

Figure 9 Plots of non-random copolymer systems, with XA=0.5, 
search length=100 (full length) and no nucleation weighting: (a) 
Ri,= 0.5 (anti-blocky), (b) Ri,= 2 (blocky) 
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Figure 10 Several random copolymer chains, with units denoted by A 
and B, lined up so as to show a 'non periodic layer' (NPL) crystallite 
(Windle et al. TM) 
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0 I I I I I I I I I 0 I I I I I I I I 

0 0.5 X^ 1.0 0 0.5 X^ 1.0 

Figure 11 Primary NPL match density (L %) versus XA (0),  for ideal copolymer system with no nucleation weighting: (a) search = 0, (b) search = 100 
(full length). In each case the corresponding curve for regular matches (as in Figure 4) is also shown ((>) 
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Figure 12 Composition of primary NPL matches as a function of XA 
for random chains and search= 100. The points (41,) are results from 
Domino, while the smooth curve was generated using the theory from 
'Statistical calculations' in the text 

multiples, which bring the chains frequently into register, 
and the width of the peaks is determined by the variability 
parameter. The insert is a replot of the peak 
corresponding to the ratio 4:3 but calculated for a lower 
degree of axial variability. The peak is thus narrower, and 
small side peaks are now visible corresponding to ratios of 
9:7 and 11:8. 

STATISTICAL CALCULATIONS 

The purpose of these calculations is to predict statistically 
the parameters describing some of the more 

straightforward models built by computer. In some 
respects, the mathematics is related to that already 
derived for homopolymer matches. We report a general 
equation which will give primary matching statistics for 
two component random copolymer chains, and has the 
flexibility to predict homopolymer matches (as has been 
done by Flory 4 and Wunderlich 7) and matches between 
sequences which are not regular, such as those which 
contribute to NPL crystallites. 

Sequence matches 
Matches of NPL sequences. Consider two infinitely 

long adjacent chains, consisting of randomly arranged 
units A and B. If the probability of any unit being A is PA, 
then the probability that the ith units of both chains 
match is: 

r = PA 2 + (1 -- PA) 2 (15) 

If we look at any two adjacent sites, say i and i + 1, the 
probability that both match will be r 2, and for a general 
sequence of n adjacent units, say i to i + n - 1 ,  the 
probability that the whole sequence matches the adjacent 
sequence may be written: 

P(n)=r" (16) 

Since the above takes no account of whether the units 
immediately before and after the n unit sequence in one 
chain are also matched in the adjacent chain, we must 
interpret P(n) as the probability that the sequence (units i 
to i + n -  1) contains a match of length n units, or is part of 
a longer match. In order to restrict our probability to that 
of a match of length n units, and no longer, we multiply by 
the probability that the two adjacent units do not contain 
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Figure 13 Plots of random copolymer chains with XA = 0.5, showing 
primary NPL matches: (a) no search, (h) 100 unit (full length) search, (c) 
100 unit search with a nucleation weighting of 2 

a m a t c h ,  i.e. ( 1 - - r )  2, to give:  

P'(n) = r~'(1 - r) 2 

T h e  b i n o m i a l  d i s t r i bu t i on  m a y  be  wr i t t en  as: 

(17) 
where  

D(a) = (b).  P" ' (1  -- p )b -a  

b~ ( h a )  = - -  

(b- a)!a! 

(18) 
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Figure 14 Primary NPL match densities (L %) are shown as a function 
of the blockiness parameter Ri, for XA = 0.5 (A), 0.75 (~) and 0.9 (ST) 
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Figure 15 Blockiness (R~easur~l/R~eal) of the NPL primary matches 
shown as a function of the chain blockiness Ri,: XA = 0.5 (@), XA = 0.75 
(O) and XA=0.9 (0)  

where D(O,n]m) is the p robab i l i ty  of  there  being no 
matches  of  length n in a chain  of  length m units.  

Now,  the  best  ma tch  d is t r ibu t ion  of  D o m i n o  is given by  
the p robab i l i ty  tha t  there  is at  least  one ma tch  of  length n 
and  tha t  there  are no matches  longer.  This is wri t ten as: 

XNpL(nlm) = [1 -- O(O,nlm)].[D(O,n + llm).D(O,n + 2Ira) . . .  

.. D(O,m- l lm'D(O,m[m)] (20) 

i.e. 

XNPL(nlm) = [1 - (I  - P'(n)) m-" + 1]. 

i.e. 

f i  (1-P'(i)) " - ' + '  
i=n+ 1 

(21) 

X N p L ( n l m )  = [ 1  - -  (1  - -  r " . ( 1  - -  r ) 2 )  m - "  + 1 ] .  

f i  ( 1 - f l ' ( 1 - r ) 2 )  m-i+1 (22) 
i = n + l  

Figure 20 shows d is t r ibu t ions  of  the  best  ma tch  lengths 
(curve I) ca lcula ted  from equa t ion  (22), for X A = 0.5, 0.75 
and  0.9. 

N P L  match composition. It  is poss ible  to extend the 
express ion for the  p robab i l i t y  of  a ma tch  of  length n: 

P(n) = (P2A + (1 - PA)2)" (15) 

P is the p robab i l i ty  of a success, and  D(a) gives the 
p robab i l i ty  of a successes in b a t tempts .  In  our  case we are  
interested in the p robab i l i t y  of  there  being a success ra ther  
than  a successes (!). This is best  expressed as: 

P robab i l i ty  of a success = 1 -D(O,nlm ) (19) 

Figure 16 Plot of a random copolymer system with XA = 0.5 and 
nucleation weighting=5 showing both primary NPL matches and 
secondary matches. The high nucleation weighting ensures that it is easy 
to distinguish the primary matches as a continuous feature across the 
plot 
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Figure 17 Total match density T(~) (11) and normalized secondary 
match density S(%) (IS]) plotted as a function of the flexibility parameter 
for random copolymer chains: (a) XA=0.5 and (b) XA=0.75. Unit 
lengths  are  0.63 and  0.83 nm, respectively 
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Figure 18 Total match density T(%) (11) and normalized secondary 
match density S(~) ([B) plotted against the flexibility parameter for 
non-random chains (Rb=5): (a) XA=0.5 and (b) XA=0.75. Unit 
lengths are 0.63 and 0.83 nm, respectively 

to give the probabi l i ty  of  a match  of a given composi t ion.  
Expanding  the right hand side of equat ion (15) gives: 

or 

n 

P(n) = ~ (ni)'(P~)"[(l - Pa)2] "-i (23) 
i=O 

n 

P(n) = ~ P(iln) (24) 
i = 0  

P(iln ) represents the probabi l i ty  of a ma tch  of length n, 
containing i units of type A. Thus the average 
compos i t ion  of matches  of  length n m a y  be computed  
from: 

n 

Z i'P(iln) 
( i )  i = 0  

P(n) 
(25) 

for a given value of PA. The mean  ma tch  composi t ion  so 
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Figure  19 Effect of va r ia t ion  in m o n o m e r  length on secondary  match  
densi ty  wi th  XA for ideal  chains  and  var iab i l i ty  pa ramete r s  of f = 1 
( ) and  (inset) f = O . 1 %  ( - - - )  
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Figure 20 Calculated match length distributions for NPL primary 
matches for compositions of (a) 0.5, (b) 0.75 and (c) 0.9: (I) quenched, 
and (II) annealed systems 

derived is shown in Figure 12 (continuous curve), in 
comparison with the measured match compositions from 
Domino for quenched systems. The prediction of skewing 
of match composition is good. 

Homopolymer matches. The treatment is similar to the 
N P L  case. The basic probability with which we are 
concerned is the probability of either an n unit 
homopolymer match of type A, or an n unit 
homopolymer match of type B. Hence if we put: 

then 

and 

s = P~ ; t = (1 - PA) 2 (26) 

P(n) = s" + t" (27) 

P'(n) = s"'(1 - s) 2 + t".(1 - 02 (28) 

Thus, substituting into equation (21), we obtain: 

XHomo(nlm) = [1 -- (1 -- s"'(1 -- s) 2 -- t~'(1 -- t)2) " - "  + 1]. 

f i  ( 1 - s i ' ( 1 - s ) 2 - t i ' ( 1 - t ) 2 )  m-i+1 (29) 
i = n +  1 

Examples of the distribution of best homopolymer match 
lengths (curve II) are shown in Figure 21. 

Searched matching. In the searching process, one chain 
is held fixed while the other is cycled past it. This means 
that, for chains of length m, we have ( m - n + l ) . m  
attempts at finding a match of length n, and equations 
(22) and (29) become: 

X~LCh(nlm) = I-1 -- (1 -- P-(1 -- r)2) (m - n  + 1)'m 3 

f i  (1- r~ ' (1- r )2)  ~m-i+lr'~ (30) 
i = n + l  

and 

Search 
XHomo ( n l m )  - -  [ 1  - (1 - -  s " ' ( 1  - -  s)  ~ - -  t " ' ( 1  - -  t ) 2 )  ~ ' - "  + , t . , ]  

• I  ( 1 - s i . ( 1 - s ) 2 - t i . ( 1 - t ) z )  (m-i+l)'m (31) 
i = n + l  

respectively (see Figures 20 and 21, curves (II)). 

Effect of chain length on match length. A final 
application of equation (22) is to demonstrate the effect of 
chain length on match length, and hence percentage 
crystallinity. We consider the quenched N P L  case, for 
three compositions. Results are shown in Figures 22 and 
23. Whilst shorter chains naturally contain shorter 
matches, the proportion of chain involved in the matches 

i 
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n 

Figure 21 Calculated match length distributions for homopolymer 
primary matches for compositions of (a) 0.5, (b) 0.75 and (c) 0.9: fl) 
quenched, and flI) annealed systems 
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Figure 22 Calculated primary NPL match length as a function of 
chain length for chains of composition (I) 0.5, (II) 0.75 and (III) 0.9, 
using equation (22) (quenched chains) 
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Figure 23 Calculated primary N PL match crystallinity as a function of 
chain length for chains of composition (I) 0.5, (II) 0.75 and (III) 0.9 for 
quenched chains 

actually increases, hence the percentage crystallinity 
increases. 

Comparison between Domino and statistical theory 
Table 1 contains mean values for the match length 

distributions generated by Domino and the statistical 
theory, for comparison. The agreement is good when 
PA = 0.5, and in all the quenched cases. However, Domino 
falls short of the predicted matching in the searched cases 
for PA~0.5, especially in the case of homopolymer 
matches. 

We have investigated this lack of agreement, and have 
concluded that the problem lies in our use of the Binomial 
distribution in calculating X(nlm ). When we discuss the 
number of attempts we may have at finding a match 
between two chains (i.e. the number of positions where we 
may look) we are assuming that each attempt is 
independent of all others. In the quenched case, provided 
we have ideal random chains, this appears reasonable. In 
the searched case, the problem is most easily visualized by 
considering homopolymer matches for chains with 
composition PA = 0.9. The best match between two such 
chains is automatically restricted by the longest 
homopolymer runs in the two chains, and will be equal to 
the shorter of the two. If, instead of cycling the second 
chain through m positions, we generate m independent 
chains, and take the chain which matches best to the first 

without cycling, we obtain a very different answer. 
Referring to Table 1, and considering again the case for 
homopolymer matches and a chain composition of 0.9, 
we are looking for an average best match length of 35.7 
units, while Domino gave 22.7 units. We obtain by this 
new method of searching in Domino, an average best 
match length of 48.5 units for chains of length 100 units. 
We can see that we are in fact searching for a match 
which is at least as long as the longest homopolymer 
sequence on the fixed chain. So keeping the same fixed 
chain for m different matching chains does not actually 
produce independent matching. The only way to have 
independence is to consider m pairs of chains, and to look 
for the best match from this ensemble. Each pair of chains 
is assumed quenched, and the result we obtain for the 
average best match length is 36.5 units. This may bring 
the computer model in line with the mathematical one, 
but it also emphasizes the lack of realism of this particular 
solution, and we do not develop it further. 

Thus in general, the analysis as developed is invalid for 
searched chains, although the difficulty is only apparent 
for chains in which one type of unit predominates. Indeed, 
as we approach PA = 0.5, the closeness of the agreement 
would seem to imply that the independence criterion is 
being met. 

RELATION TO EXPERIMENT 

The computer modelling and statistical calculations 
above were stimulated by a series of experimental data 
obtained from random copolyesters such as that shown in 
Figure 1. The data fall into three classes: 

1 Differential scanning calorimetry (d.s.c.) of the 
melting process. 

2 X-ray diffraction analysis. 
3 Transmission electron microscopy. 

The development of thermotropic random copolyesters 
based on molecules without side groups has been driven 
by the objective of making stronger, stiffer and more 
thermally stable thermoplastics which can be either 
moulded in conventional equipment or drawn into fibres. 
Assessed mechanically, the copolymers appear to melt 
within a comparatively narrow temperature range 
around 300°C, although intriguingly, under conditions of 
continued shear, there is some indication that flow can be 
maintained at temperatures below the melting point 23. 
Thermal analysis by d.s.c, also shows a clear melting 
endotherm, however the background, especially at 
temperatures below melting, appeared at first to be 
uneven and irreproducible. It has been shown 18 

Table 1 A comparison of mean primary match lengths for the Domino 
computer model, with those predicted by the statistical equation derived 
in the text 

Homopolymer matches NPL matches 

Domino Theory Domino Theory 

XA=0.5 Quenched 4.05 3.51 6.25 5.88 
Searched 6.40 6.80 12,73 12.42 

XA=0.75 Quenched 7.05 6.93 8.03 8.23 
Searched 11.15 14.78 17.07 17.79 

XA=0.9 Quenched 15.85 15.20 17.90 15.84 
Searched 22.75 35.67 31.20 37.45 
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Figure 24 Thermal analysis traces for a copolymer ofhydroxybenzoic 
and hydroxynaphthoic acids (B-N), with a heating rate of 30°C min - 1: 
(I) as received, (II) after quenching from 320°C and (III) after annealing 
at 220°C. Peak temperatures in degrees Centigrade (Windle et al)S). 
[Reproduced from Windle, A. H., Viney, C., Golombok, R., Donald, A. 
M. and Mitchell, G. R. Faraday Discuss. Chem. Soc. 1985, 79, paper 5 by 
permission of the Royal Society of Chemistry ©]  

that a possible interpretation of the 'background' is in 
terms of a very broad premelting endotherm. Annealing 
treatments up to 100°C below the melting point leave 
their mark as localized deviations on subsequent thermal 
analysis plots. This behaviour is shown in Figure 24 zs. 
The evidence thus points to a reasonably well defined 
melting phenomenon with the physical liquification of the 
polymer correlating with a distinct endotherm. In 
addition, there is a considerable temperature range over 
which a measure of premelting seems to occur, such as 
was predicted by Flory 2'4. 

The sharpness of wide angle diffraction maxima from 
thermotropic random copolymers would be indicative of 
some measure of crystalline order, and this is lost above 
the main melting transition, where the main 
intermolecular peak broadens as it becomes characteris- 
tic of a nematic liquid phase (Figure 25) ~s. The order is 
also apparent in diffraction patterns of fibre samples. 
Where these are annealed close to the melting point there 
is a clear sharpening of the diffraction peaks, and the 
development of a series of sharp but weak reflections 
which, for polymers with hydroxybenzoic acid as the 
major component, correspond to the diffraction pattern 
reported for the corresponding homopolymer 24. The 
diffraction evidence thus points to a dominant ordered 
component which is not purely a homopolymer. Most of 
the diffraction intensity is concentrated into a single 
equatorial maximum and the meridional reflections. 
These latter, while comparatively sharp with little 
spreading along the layer lines, are at spacings consistent 
with a random copolymer chain ~9'2°. 

It should perhaps be recorded that the idea of NPL 
crystallites~ s stemmed from consideration of the available 
X-ray data, and the subsequent modelling reported above 

Windle 

has demonstrated the extent to which this type of order 
could pervade the material under a range of conditions. 

Transmission electron microscopy of thin films of 
random copolyesters can show, under suitable 
conditions, contrast effects which indicate the presence of 
small ordered entities. It was found 25 that the entities 
became visible in samples of copolyesters, such as that of 
Figure 1, which had been annealed on a rock salt 
substrate at a temperature about 100°C below the melting 
point. The entities were only visible in dark field, and were 
clearest when the diffraction aperture was in the region of 
the equatorial reflection. Some can be seen in the 
micrograph z s of Figure 26. In some cases the entities were 
elongated normal to the direction of chain orientation 
induced by shearing the specimen. If the sizes observed 
are taken to be an upper limit, especially with regard to 
thickness in the chain direction where projection effects 
are likely to exaggerate the dimension, the scale of the 
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Figure 25 X-ray diffractometer scans of an unoriented sample of B-N 
at: (a) 20 and (b) 300°C (Windle et al.la). [Reproduced from Windle, A. 
H., Viney, C., Golombok, R., Donald, A. M. and Mitchell, (3. R. 
Faraday Discuss. Chem. Soc. 1985, 79, paper 5 by permission of the 
Royal Society of Chemistry ©] 
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Figure 26 Dark field micrograph of B-N sheared and then annealed 
for 20 rain at 20&C showing small but strongly scattering entities. The 
shear axis is vertical (Windle et al.t s). [Reproduced from Windle, A. H., 
Viney, C., Golombok, R., Donald, A. M. and Mitchell, G. R. Faraday 
Discuss. Chem. Soc. 1985, 79, paper 5 by permission of the Royal Society 
of Chemistry ©] 

entities, ~ 2 0 n m  thick and ~ 1 0 0 n m  long, it is not 
inconsistent with the predictions of the modelling above, 
especially where a measure of nucleation weighting is 
included. 

C O N C L U S I O N S  

The aim of the work described here, has been to 
investigate the geometrical limits to order in random 
copolymers, with a view to determining the effect of 
various chain and match parameters. We conclude: 

(1) The mean length of both N P L  and homopolymer  
primary matches increases as the chain composition 
changes from XA=0.5 to XA = 1 or XA=0. 

(2) When X A ~ 0.5, the composition of N P L  matches is 
biased towards the dominant component.  

(3) The mean primary match length increases when the 
chains are cycled past each other in a searching routine to 
find the best match. In the case of N P L  matches, 
searching over 100 units leads to an approximate 
doubling of primary match length. 

(4) When chains are built with pronounced non- 
random statistics, the mean primary match lengths 
increase. 

(5) The primary matches between non-random chains 
show a more pronounced degree of non-randomness than 
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the chains themselves, i.e. blocky chains contain blockier 
matches. 

(6) The number of secondary matches increases as the 
chain composition changes from XA =0.5 to XA = 1 or 
XA=0. 

(7) When the axial variability parameter  exceeds 1%, 
the number of secondary matches is approximately 
independent of chain blockiness. When the variability is 
less than 1%, the number of secondary matches decreases 
as the blockiness increases. 

(8) For given chain parameters, the number of 
secondary matches will be determined by the percentage 
difference in length of the monomer  units relative to the 
size of the axial variability parameter  used. For  unit 
lengths of simple ratio the number of secondary matches 
is enhanced. 

(9) The degree of crystallinity (i.e. the volume of 
matches divided by the volume of chains) increases as the 
chain length decreases. 
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